A vacuum flask (also known as a Dewar flask, Dewar bottle or thermos) is an insulating storage vessel that slows the speed at which its contents change in temperature. It greatly lengthens the time over which its contents remain hotter or cooler than the flask's surroundings by trying to be as adiabatic as possible. Invented by James Dewar in 1892, the vacuum flask consists of two , placed one within the other and joined at the neck. The gap between the two flasks is partially evacuated of air, creating a near-vacuum which significantly reduces heat transfer by heat conduction or convection. When used to hold cold liquids, this also virtually eliminates condensation on the outside of the flask.
Vacuum flasks are used domestically to keep contents inside hot or cold for extended periods of time. They are also used for thermal cooking. Vacuum flasks are also used for many purposes in industry.
Dewar's design was quickly transformed into a commercial item in 1904 as two German , Reinhold Burger and Albert Aschenbrenner, discovered that it could be used to keep cold drinks cold and warm drinks warm and invented a more robust flask design, which was suited for everyday use. The Dewar flask design had never been patented but the German men who discovered the commercial use for the product named it Thermos, and subsequently claimed both the rights to the commercial product and the trademark to the name. In his subsequent attempt to claim the rights to the invention, Dewar instead lost a court case to the company. The manufacturing and performance of the Thermos bottle was significantly improved and refined by the Viennese inventor and merchant Gustav Robert Paalen, who designed various types for domestic use, which he also patented, and distributed widely, through the Thermos Bottle Companies in the United States, Canada and the UK, which bought licences for respective national markets. The American Thermos Bottle Company built up a mass production in Norwich, CT, which brought prices down and enabled the wide distribution of the product for at-home use. Over time, the company expanded the size, shapes and materials of these consumer products, primarily used for carrying coffee on the go and carrying liquids on camping trips to keep them either hot or cold. Eventually other manufacturers produced similar products for consumer use.
The term "thermos" became a household name for vacuum flasks in general. , Thermos and THERMOS remains a registered trademark in some countries, including the United States, but the lowercase "thermos" was declared a genericized trademark by court action in the United States in 1963.
Extremely large or long vacuum flasks sometimes cannot fully support the inner flask from the neck alone, so additional support is provided by spacers between the interior and exterior shell. These spacers act as a thermal bridge and partially reduce the insulating properties of the flask around the area where the spacer contacts the interior surface.
Several technological applications, such as NMR and MRI machines, rely on the use of double vacuum flasks. These flasks have two vacuum sections. The inner flask contains liquid helium and the outer flask contains liquid nitrogen, with one vacuum section in between. The loss of precious helium is limited in this way.
Other improvements to the vacuum flask include the vapour-cooled radiation shield and the vapour-cooled neck, both of which help to reduce evaporation from the flask.
Vacuum flasks have been used to house Weston cell and ovenized , along with their printed circuit board, in precision voltage-regulating devices used as electrical standards. The flask helped with controlling the Zener temperature over a long time span and was used to reduce variations of the output voltage of the Zener standard owing to temperature fluctuation to within a few parts per million.
One notable use was by Guildline Instruments, of Canada, in their Transvolt, model 9154B, saturated standard cell, which is an electrical voltage standard. Here a silvered vacuum flask was encased in foam insulation and, using a large glass vacuum plug, held the saturated cell. The output of the device was 1.018 volts and was held to within a few parts per million.
The principle of the vacuum flask makes it ideal for storing certain types of rocket fuel, and NASA used it extensively in the propellant tanks of the Saturn launch vehicles in the 1960s and 1970s.Cortright, Edgar. "Apollo Expeditions to the Moon." Official NASA publications. 1975.
The design and shape of the Dewar flask was used as a model for optical experiments based on the idea that the shape of the two compartments with the space in between is similar to the way the light hits the eye. The vacuum flask has also been part of experiments using it as the capacitor of different chemicals in order to keep them at a consistent temperature.
The industrial Dewar flask is the base for a device used to passively insulate medical shipments. Most vaccines are sensitive to heat and require a cold chain system to keep them at stable, near freezing temperatures. The Arktek device uses eight one-litre ice blocks to hold vaccines at under 10 Celsius.
In the oil and gas industry, Dewar flasks are used to insulate the electronic components in Wireline Logging tools. Conventional logging tools (rated to 350 °F) are upgraded to high-temperature specifications by installing all sensitive electronic components in a Dewar flask.Baird, Tom, et al. "High-pressure, high-temperature well logging, perforating and testing." Oilfield Review 5.2/3 (1993): 15-32.
In addition, cryogenic storage dewars are usually pressurized, and they may explode if pressure relief valves are not used.
Thermal expansion has to be taken into account when engineering a vacuum flask. The outer and inner walls are exposed to different temperatures and will expand at different rates. The vacuum flask can rupture due to the differential in thermal expansion between the outer and inner walls. are commonly used in tubular vacuum flasks to avoid rupture and maintain vacuum integrity.
Design
Research and industry
Safety
See also
Further reading
External links
|
|